Part Number Hot Search : 
XMXXX LB5410 TDE1891 N4141 A2120 R1045 A1250 N4733
Product Description
Full Text Search
 

To Download AKD4586 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 ASAHI KASEI
[AKD4586]
AKD4586
Evaluation board Rev.B for AK4586
GENERAL DESCRIPTION The AKD4586 is an evaluation board for the AK4586, the Multi-channel Audio CODEC with DIR. The AKD4586 has the digital audio interface and can achieve the interface with digital audio systems via opt-connector or BNC connector. Ordering guide
AKD4586 --Evaluation board for AK4586 (Cable for connecting with printer port of IBM-AT compatible PC and control software are packed with this.)
FUNCTION On-board analog input buffer circuit Compatible with 2 types of interface - DIT(AK4103)/DIR(AK4586) with optical output/input and BNC input - Direct interface with AC3 decoder by 10pin header 10pin header for serial control interface
-12V +12V
Regulator
GND
LIN RIN
Input Buffer
Control Data
10pin Header
LOUT1 ROUT1 LOUT2 ROUT2 LOUT3 ROUT3 Output Buffer
BNC In
AK4586
AK4103(DIT)
Opt In Opt Out
BNC Out Through Out AC3
10pin Header
Figure 1. AKD4586 Block Diagram * Circuit diagram and PCB layout are attached at the end of this manual.

1
2005/7
ASAHI KASEI
[AKD4586]
Consideration for analog input circuit
3.0Vpp Op-amp circuit
AK4586
10u RIN 33 LIN 32 330 330 NJM5532 + -
6.0Vpp
Signal
Same circuit
1) Gain
Gain of analog input circuit is 330/(330+330) = -6.02dB. Therefore input level for this board is +0.51dBV(=3.0Vpp)+6.02dB = +6.53dBV = 6.00Vpp = 2.12Vrms.
2) S/N of op-amp circuit (Theory: BW=20k+A)
Non-inverting amp is implemented on board. The output noise level of op-amp circuit is -126.01dBV = -132.54dB (0dB=+6.53dBV). S/N of ADC is 101.6dB (measurement). Therefore total S/N of op-amp circuit and ADC is 101.60dB (measurement: 101.6dB)

2
2005/7
ASAHI KASEI
[AKD4586]
Consideration for analog output circuit
3.0Vpp 6.0Vpp 22u NJM5532 + 4.7k 220 Signal 330p
AK4586
ROUT1 31 LOUT1 30 ROUT2 29 LOUT2 28 ROUT3 27 LOUT3 26 Same circuit Same circuit
10k
4.7k Same circuit Same circuit Same circuit
1) Frequency response of HPF
The HPF is implemented on board to cancel the DC offset of analog output of AK4586. Frequency response of 1st-order HPF | Amplitude |2 = 1/{1+(fc/f)2}; fc=1/2RC=0.7Hz@R=10k,C=22u fin 20Hz Frequency Response -0.006dB 2) Gain, S/N and frequency response of op-amp circuit 1st-order filter with non-inverting amp is implemented on board to double the analog output level and attenuate outband noise. a) Gain The gain is 1+4.7k/4.7k = +6.02dB. Therefore the output level of this board is 0.51dBV(=3.0Vpp) + 6.02dB = 6.53dBV = 6.00Vpp = 2.12Vrms. b) S/N (Theory: BW=20k+A) The output noise level of non-inverting amp -110.36dBV = -116.89dB (0dB=6.53dBV) S/N of DAC is 106.3dB (measurement) Therefore total S/N of op-amp circuit and DAC is 105.90dB (measurement: 105.8dB).

3
2005/7
ASAHI KASEI
[AKD4586]
c) Frequency response of filter Frequency response of the 1st-order filter | Amplitude |2 = K*{1+(f/fc2)2}/{1+(f/fc1)2}; K = 1+4.7k/4.7k = 2, fc1 = 1/2RC = 102.7kHz@R=4.7k,C=330p, fc2 = K*fc1 = 205.3kHz Frequency response referenced to output level of this board is as following table: fin DC 20kHz 40kHz 80kHz Frequency Response 0dB -0.121dB -0.452dB -1.448dB
145kHz -3dB
-6dB
If the frequency response of filter influences the system, 1st-order LPF is also available as the following figure:
3.0Vpp
LPF 22u NJM5532 + 4.7k 220
6.0Vpp
AK4586
ROUT1 31 LOUT1 30 ROUT2 29 LOUT2 28 ROUT3 27 LOUT3 26 Same circuit Same circuit
Signal 3300p
10k
4.7k Same circuit Same circuit Same circuit
Frequency response of this LPF | Amplitude |2 = 1/{1+(f/fc)2}; fc = 1/2RC = 219kHz@R=220,C=3300p Frequency response referenced to output level of this board is as following table: fin DC 20kHz 40kHz 80kHz Frequency Response 0dB -0.036dB -0.142dB -0.543dB
219kHz -3dB
-dB
The total frequency response of this board is sum of the external filter and internal LPF of AK4586. These filters are effective to attenuate the high frequency noise since some measurement units is sensitive for out-of-band noise.

4
2005/7
ASAHI KASEI
[AKD4586]
Digital Inputs
Toslink(TORX176: PORT2) or BNC connector(J10) is used for digital inputs. Using Toslink or BNC connector is selected by (JP2).
Digital Outputs
TOTX176(PORT2) is used for ADC output, and BNC connector(J3) is used for through data output.
Operation sequence
1) Set up the power supply lines. (See "Other jumpers set-up".) Name Color Voltage Contents Contents +12V Orange Regulator and Analog 1215V interface -12V Blue -15-12V Analog interface AGND Black 0V Analog ground AGND jack should be always shorted. DGND Black 0V Digital ground If JP1 is shorted ,DGND is not needed. Table 1. Set up of power supply lines Each supply line should be distributed from the power supply unit 2) Set-up the evaluation modes, jumper pins and DIP switches. (See the followings.) 3) Power on. The AK4586 should be reset once bringing SW1(PDN) "L" upon power-up.
PORT1 uP-I/F
Serial control
The AK4586 can be controlled via the printer port (parallel port) of IBM-AT compatible PC. Connect PORT1(uP-I/F) with PC by 10-line flat cable packed with the AKD4586. Take care of the direction of connector. There is a mark at pin#1. The pin layout of PORT1 is as Figure 2.
10 GND GND GND GND GND 2
9 CSN CCLK CDTI CDTO NC 1
Figure 2 PORT1 pin layout

5
2005/7
ASAHI KASEI
[AKD4586]
Evaluation mode
Applicable evaluation modes (1) Loopback mode (2) Evaluation of A/D (3) Evaluation of D/A (4) Evaluation using AC3 Decoder
(1),(2),(4) Analog Input
(3),(4) Digital Input
PORT2 TORX176 J10 BNC(RX)
J4
J1 RIN
J2 LIN
ROUT1
J7
LOUT1
J5
ROUT2
(2) Digital Output (4) AC3 Decoder
J3 BNC(TX) PORT3 TOTX176 PORT4 AC3 PORT1 P I/F
(1),(3),(4) Analog Output
J8
LOUT2
J6
ROUT3
J9
LOUT3
Printer Port
0V
PC
+12V -12V Power Supply Unit
Figure 3. Connection diagram for each evaluation mode (1) Loopback mode MCLK, BICK and LRCK are fed from AK4586. JP26(SDTI1), JP27(SDTI2) and JP28(SDTI3) should be shorted. JP26(SDTI1) shorted JP27(SDTI2) shorted JP28(SDTI3) shorted Loopback outputs to ROUT1, LOUT1 Loopback outputs to ROUT2, LOUT2 Loopback outputs to ROUT3, LOUT3
Nothing should be connected to PORT4(AC3). Clock operation mode of the AK4586 should be set to X'tal mode by the control software packed with the AKD4586. Clock operation mode is set by CM1-0 bit of Addr=02H.

6
2005/7
ASAHI KASEI
[AKD4586]
(2) Evaluation of ADC PORT2(TOTX176) is used for digital output. AK4103(DIT) generates audio bi-phase signal from received data and which is output through optical connector (TOTX176). It is possible to connect AKM's D/A converter evaluation boards or the digital-amplifier which equips DIR input. SW2 is used to set the interface format and clock mode of AK4103 (see DIP-SW set-up). Clock operation mode of the AK4586 should be set to X'tal mode by the control software packed with the AKD4586. Clock operation mode is set by CM1-0 bit of Addr=02H.
(3) Evaluation of DAC PORT2(TORX176) or J10(BNC(RX)) is used for digital input. DIR of AK4586 generates MCLK, BICK, LRCK and SDATA from the received data through optical connector(TORX176) or BNC connector. Used for the evaluation using CD test disk. In case of using BNC connector, set JP2(RX) to "BNC" side. Nothing should be connected to PORT4(AC3). (4) Evaluation using AC3 decoder Connect the AC3 decoder with PORT4(AC3). Decoded serial data is sent to AKD4586. JP26(SDTI1), JP27(SDTI2) and JP27(SDTI3) should be open.
Clock operation mode set-up
Clock operation mode should be set as Table 2 at evaluation modes (1), (2) and (3). Both clock operation mode can be used at other evaluation modes. Clock operation mode can be set by CM1-0 bits(Addr=02H) of AK4586. CM1-0 bits can be set by the software packed with AKD4586. Please refer to the datasheet of AK4586 for details. Clock operation mode Corresponding eva-mode PLL mode (3) X'tal mode (1),(2) Table 2. Clock operation mode set-up
Default
Jumpers set up
[JP1](GND): Analog ground and digital ground. This jumper pin should always be shorted. [JP2] (RX):Source of digital inputs. RX side: Toslink(TORX176: PORT2) BNC side: BNC connector(JP10) [JP26] (SDTI1):Source of SDTI1 input Short: SDTO of AKD4586 Open: PORT4 [JP27] (SDTI2): Source of SDTI2 input Short: SDTO of AKD4586 Open: PORT4 [JP28] (SDTI3): Source of SDTI3 input Short: SDTO of AKD4586 Open: PORT4

7
2005/7
ASAHI KASEI
[AKD4586]
DIP-SW set-up(Setup of interface format and clock mode of AK4103)
[SW1]: No.4-8 set the mode of AK4586 and No.6-10 set the mode of AK4103. Pin No. 1 2 3 4 5 6 7 8 Name Reserve Reserve Reserve DIF2 DIF1 DIF0 CKS1 CKS0 Contents
Always OFF AK4103 interface format(see Table 4) (Default: No.4=ON, No.5,6=OFF: 24bit MSB justified) AK4103 clock mode(see Table 5) (Default: No.7,8=OFF: 256fs) Table 3. SW1 set-up (Note: No.8 is "0" at ON, others are "1" at ON.)
Mode 0 1 2 3 4 5 6 7
No.4 No.5 No.6 DIF2 DIF1 DIF0 0 16bit, LSB justified 0 0 1 18bit, LSB justified 0 0 0 20bit, LSB justified 0 1 1 24bit, LSB justified 0 1 0 24bit, MSB justified 1 0 Default 1 I 2S 1 0 0 24bit, MSB justified (Master) 1 1 1 I2S(Master) 1 1 Table 4. AK4103 interface format set-up (1=ON, 0=OFF) Format
Clock mode
No.7 No.8 CKS1 CKS0 128fs OFF ON 256fs OFF OFF 384fs ON ON 512fs ON OFF Table 5. AK4103 clock mode set-up
Default

8
2005/7
ASAHI KASEI
[AKD4586]
The indication content for LED
LED turns on when each output goes "H". [LE1] (DZF1): DZF1 of AK4586 [LE2] (DZF2/OVF): DZF2/OVF of AK4586 [LE3] (INT0): INT0 of AK4586 [LE4] (INT1): INT1 of AK4586
Interface with AC3 decoder
PORT3(AC3) is used for interface with AC3 decoder. 3-line serial data can be input from the decoder via PORT6. Pin layout of PORT4 is as Figure 4.
10 MCLK BICK LRCK SDTO NC 2 PORT4 AC3 9 GND GND SDTI1 SDTI2 SDTI3 1
Figure 4. PORT4 pin layout

9
2005/7
ASAHI KASEI
[AKD4586]
Control Software Manual Set-up of evaluation board and control software
1. Set up the AKD4586 according to previous term. 2. Connect IBM-AT compatible PC with AKD4586 by 10-line type flat cable (packed with AKD4586). Take care of the direction of 10pin header. (Please install the driver in the CD-ROM when this control software is used on Windows 2000/XP. Please refer "Installation Manual of Control Software Driver by AKM device control software". In case of Windows95/98/ME, this installation is not needed. This control software does not operate on Windows NT.) 3. Insert the CD-ROM labeled "AKD4586 Evaluation Kit" into the CD-ROM drive. 4. Access the CD-ROM drive and double-click the icon of "AKD4586.exe" to set up the control program. 5. Then please evaluate according to the follows.
Operation flow
Keep the following flow. 1. Set up the control program according to explanation above. 2. Click "Port Reset" button.
Explanation of each buttons
1. [Port Reset] : 2. [Write default] : 3. [All Write] : 4. [Function1] : 5. [Function2] : 6. [Function3] : 7. [Function4] : 8. [Function5]: 9. [SAVE] : 10. [OPEN] : 11. [Write] : Set up the USB interface board (AKDUSBIF-A) . Initialize the register of AK4586. Write all registers that is currently displayed. Dialog to write data by keyboard operation. Dialog to write data by keyboard operation. The sequence of register setting can be set and executed. The sequence that is created on [Function3] can be assigned to buttons and executed. The register setting that is created by [SAVE] function on main window can be assigned to buttons and executed. Save the current register setting. Write the saved values to all register. Dialog to write data by mouse operation.
Indication of data
Input data is indicated on the register map. Red letter indicates "H" or "1" and blue one indicates "L" or "0". Blank is the part that is not defined in the datasheet.

10
2005/7
ASAHI KASEI
[AKD4586]
Explanation of each dialog 1. [Write Dialog]: Dialog to write data by mouse operation
There are dialogs corresponding to each register. Click the [Write] button corresponding to each register to set up the dialog. If you check the check box, data becomes "H" or "1". If not, "L" or "0". If you want to write the input data to AK4586, click [OK] button. If not, click [Cancel] button.
2. [Function1 Dialog] : Dialog to write data by keyboard operation
Address Box: Input registers address in 2 figures of hexadecimal. Data Box: Input registers data in 2 figures of hexadecimal. If you want to write the input data to AK4586, click [OK] button. If not, click [Cancel] button.
3. [Function2 Dialog] : Dialog to evaluate ATT
Address Box: Input registers address in 2 figures of hexadecimal. Start Data Box: Input starts data in 2 figures of hexadecimal. End Data Box: Input end data in 2 figures of hexadecimal. Interval Box: Data is written to AK4642 by this interval. Step Box: Data changes by this step. Mode Select Box: If you check this check box, data reaches end data, and returns to start data. [Example] Start Data = 00, End Data = 09 Data flow: 00 01 02 03 04 05 06 07 08 09 09 08 07 06 05 04 03 02 01 00 If you do not check this check box, data reaches end data, but does not return to start data. [Example] Start Data = 00, End Data = 09 Data flow: 00 01 02 03 04 05 06 07 08 09 If you want to write the input data to AK4586, click [OK] button. If not, click [Cancel] button.

11
2005/7
ASAHI KASEI
[AKD4586]
4. [Save] and [Open] 4-1. [Save]
Save the current register setting data. The extension of file name is "akr".
(Operation flow)
(1) Click [Save] Button. (2) Set the file name and push [Save] Button. The extension of file name is "akr". 4-2. [Open] The register setting data saved by [Save] is written to AK4586. The file type is the same as [Save].
(Operation flow)
(1) Click [Open] Button. (2) Select the file (*.akr) and Click [Open] Button.
- 12 -
2005/7
ASAHI KASEI
[AKD4586]
5. [Function3 Dialog]
The sequence of register setting can be set and executed. (1) Click [F3] Button. (2) Set the control sequence. Set the address, Data and Interval time. Set "-1" to the address of the step where the sequence should be paused. (3) Click [Start] button. Then this sequence is executed. The sequence is paused at the step of Interval="-1". Click [START] button, the sequence restarts from the paused step. This sequence can be saved and opened by [Save] and [Open] button on the Function3 window. The extension of file name is "aks".
Figure 2. Window of [F3]
- 13 -
2005/7
ASAHI KASEI
[AKD4586]
6. [Function4 Dialog]
The sequence that is created on [Function3] can be assigned to buttons and executed. When [F4] button is clicked, the
window as shown in Figure 3 opens.
Figure 3. [F4] window
- 14 -
2005/7
ASAHI KASEI
[AKD4586]
6-1. [OPEN] buttons on left side and [START] buttons
(1) Click [OPEN] button and select the sequence file (*.aks). The sequence file name is displayed as shown in Figure 4.
Figure 4. [F4] window(2) (2) Click [START] button, then the sequence is executed.
3-2. [SAVE] and [OPEN] buttons on right side
[SAVE] : The sequence file names can assign be saved. The file name is *.ak4. [OPEN] : The sequence file names assign that are saved in *.ak4 are loaded.
3-3. Note
(1) This function doesn't support the pause function of sequence function. (2) All files need to be in same folder used by [SAVE] and [OPEN] function on right side. (3) When the sequence is changed in [Function3], the file should be loaded again in order to reflect the change.
- 15 -
2005/7
ASAHI KASEI
[AKD4586]
7. [Function5 Dialog] The register setting that is created by [SAVE] function on main window can be assigned to buttons and executed. When [F5] button is clicked, the following window as shown in Figure 5opens.
Figure 5. [F5] window
7-1. [OPEN] buttons on left side and [WRITE] button
(1) Click [OPEN] button and select the register setting file (*.akr).
(2) Click [WRITE] button, then the register setting is executed.
7-2. [SAVE] and [OPEN] buttons on right side
[SAVE] : The register setting file names assign can be saved. The file name is *.ak5. [OPEN] : The register setting file names assign that are saved in *.ak5 are loaded.
7-3. Note
(1) All files need to be in same folder used by [SAVE] and [OPEN] function on right side. (2) When the register setting is changed by [Save] Button in main window, the file should be loaded again in order to reflect the change.
- 16 -
2005/7
ASAHI KASEI
[AKD4586]
MEASUREMENT RESULTS
1) ADC part [Measurement condition] * Measurement unit : Audio Precision System two Cascade * MCLK : 256fs * BICK : 64fs * fs : 48kHz, 96kHz * BW : 10Hz20kHz (fs=48kHz), 10Hz48kHz (fs=96kHz) * Bit : 24bit * Power Supply : AVDD=PVDD=DVDD=TVDD=5V : DIT * Interface * Temperature : Room fs=48kHz Parameter S/(N+D) DR S/N fs=96kHz Parameter S/(N+D) DR S/N
Input signal 1kHz, -0.5dB 1kHz, -60dB No signal
Measurement filter 20kLPF 20kLPF, A-weighted 20kLPF, A-weighted
Results 95.6 dB 101.4 dB 101.6 dB
Input signal 1kHz, -0.5dB 1kHz, -60dB No signal
Measurement filter fs/2 fs/2, A-weighted fs/2, A-weighted
Results 92.5 dB 103.4 dB 103.4 dB
2) DAC part [Measurement condition] * Measurement unit : Audio Precision System two Cascade * MCLK : 256fs * BICK : 64fs * fs : 48kHz, 96kHz * BW : 10Hz20kHz (fs=48kHz), 10Hz40kHz (fs=96kHz) * Bit : 24bit * Power Supply : AVDD=PVDD=DVDD=TVDD=5V * Interface : DIR * Temperature : Room fs=48kHz Parameter S/(N+D) DR S/N fs=96kHz Parameter S/(N+D) DR S/N
Input signal 1kHz, 0dB 1kHz, -60dB "0" data
Measurement filter 20kLPF 22kLPF, A-weighted 22kLPF, A-weighted
Results 97.3 dB 105.3 dB 105.8 dB
Input signal 1kHz, 0dB 1kHz, -60dB "0" data
Measurement filter 40kLPF 22kLPF, A-weighted 22kLPF, A-weighted
Results 95.5 dB 105.5 dB 105.8 dB
- 17 -
2005/7
ASAHI KASEI
[AKD4586]
Plots
(1) ADC part [Measurement condition] * Measurement unit : Audio Precision, System two, Cascade * MCLK : 256fs * BICK : 64fs * fs : 48kHz, 96kHz * BW : 10Hz20kHz (fs=48kHz), 10Hz48kHz (fs=96kHz) * Bit : 24bit * Power Supply : AVDD=DVDD=TVDD=PVDD=5V : DIT * Interface * Temperature : Room
fs=48kHz Figure 1-1. FFT (1kHz, -0.5dBFS input) Figure 1-2. FFT (1kHz, -60dBFS input) Figure 1-3. FFT (Noise floor) Figure 1-4. THD+N vs Input Level (fin=1kHz) Figure 1-5. THD+N vs fin (Input Level=-0.5dBFS) Figure 1-6. Linearity (fin=1kHz) Figure 1-7. Frequency Response (Input Level=-0.5dBFS) Figure 1-8. Crosstalk (Input Level=-0.5dBFS) fs=96kHz Figure 2-1. FFT (1kHz, -0.5dBFS input) Figure 2-2. FFT (1kHz, -60dBFS input) Figure 2-3. FFT (Noise floor) Figure 2-4. THD+N vs Input Level (fin=1kHz) Figure 2-5. THD+N vs fin (Input Level=-0.5dBFS) Figure 2-6. Linearity (fin=1kHz) Figure 2-7. Frequency Response (Input Level=-0.5dBFS) Figure 2-8. Crosstalk (Input Level=-0.5dBFS)
- 18 -
2005/7
ASAHI KASEI
[AKD4586]
(ADC, fs=48kHz)
AKM A K 4 5 8 6 A D C F F T (fs = 4 8 kH z; 1 kHz, -0 .5 d B F S inp ut) F F T p o ints = 1 6 3 8 4 , A vg = 8 , W ind o w= E q uirrip le
+0 -10 -20 -30 -40 -50 -60 d B F S -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 20
50
100
200
500 Hz
4 5 8 6 _ AD C .a t2 c
1k
2k
5k
10k
20k
Figure 1-1. FFT (1kHz, -0.5dBFS input) FFT points=16384, Avg=8, Window=Equiripple
AKM AK4586 AD C FFT (fs=48kHz; 1kHz, -60dBFS input) FFT points=16384, Avg=8, W indow=Equirriple
+0 -10 -20 -30 -40 -50 -60 d B F S -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 20
50
100
200
500 Hz
4 586_AD C .at2c
1k
2k
5k
10k
20k
Figure 1-2. FFT (1kHz, -60dBFS input) FFT points=16384, Avg=8, Window=Equiripple
- 19 -
2005/7
ASAHI KASEI
[AKD4586]
(ADC, fs=48kHz)
A KM A K4586 ADC FFT (fs=48kHz; No signal input) FFT points=16384, Avg=8, W indow=Equirriple
+0 -10 -20 -30 -40 -50 -60 d B F S -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 20
50
100
200
500 Hz
4586_AD C .at2c
1k
2k
5k
10k
20k
Figure 1-3. FFT (Noise floor) FFT points=16384, Avg=8, Window=Equiripple
- 20 -
2005/7
ASAHI KASEI
[AKD4586]
(ADC, fs=48kHz)
A KM
-80 -82 -84 -86 -88 -90 -92 d B F S -94 -96 -98 -100 -102 -104 -106 -108 -110 -140
AK 4586 ADC THD+N vs Input Level (fs=48kHz; fin=1kHz)
-130
-120
-110
-100
-90
-80
-70 dB r
-60
-50
-40
-30
-20
-10
4586_AD C .at2c
Figure 1-4. THD+N vs Input Level (fin=1kHz)
A KM
-80 -82 -84 -86 -88 -90 -92 d B F S -94 -96 -98 -100 -102 -104 -106 -108 -110 20
A K4586 A DC THD+N vs fin (fs=48kHz; Input Level=-0.5dBFS )
50
100
200
500 Hz
4586_AD C .at2c
1k
2k
5k
10k
20k
Figure 1-5. THD+N vs fin (Input Level=-0.5dBFS)
- 21 -
2005/7
ASAHI KASEI
[AKD4586]
(ADC, fs=48kHz)
A KM
+0 -10 -20 -30 -40 -50 -60 d B F S -70 -80 -90 -100 -110 -120 -130 -140 -140
A K4586 A DC Linearity (fs=48kHz; fin=1kHz)
-130
-120
-110
-100
-90
-80
-70 dB r
-60
-50
-40
-30
-20
-10
+0
4586_AD C .at2c
Figure 1-6. Linearity (fin=1kHz)
AKM
+0
AK4586 ADC Frequency Response (fs=48kHz; Input Level=-0.5dBFS)
-0.1
-0.2
-0.3
-0.4 d B F S
-0.5
-0.6
-0.7
-0.8
-0.9
-1 20
50
100
200
500 Hz
1k
2k
5k
10k
20k
Figure 1-7. Frequency Response (Input Level=-0.5dBFS)
- 22 -
2005/7
ASAHI KASEI
[AKD4586]
(ADC, fs=48kHz)
A KM AK 4586 A DC Crosstalk (fs=48kHz; Input Level=-0.5dBFS ) Upper@1k: Rch-->Lch; Lower@1k: Lch-->Rch
-100 -102.5 -105 -107.5 -110 -112.5 -115 -117.5 d B -120 -122.5 -125 -127.5 -130 -132.5 -135 -137.5 -140 20
50
100
200
500 Hz
4586_AD C .at2c
1k
2k
5k
10k
20k
Figure 1-8. Crosstalk (Input Level=-0.5dBFS)
- 23 -
2005/7
ASAHI KASEI
[AKD4586]
(ADC, fs=96kHz)
AKM AK4586 ADC FFT (fs=96kHz; 1kHz, -0.5dBFS input) FFT points=16384, Avg=8, W indow=Equirriple
+0 -10 -20 -30 -40 -50 -60 d B F S -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 40
50
100
200
500
1k Hz
4586_AD C .at2c
2k
5k
10k
20k
40k
Figure 2-1. FFT (1kHz, -0.5dBFS input) FFT points=16384, Avg=8, Window=Equiripple
A KM AK 4586 ADC FFT (fs=96kHz; 1kHz, -60dBFS input) FFT points=16384, Avg=8, W indow=Equirriple
+0 -10 -20 -30 -40 -50 -60 d B F S -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 40
50
100
200
500
1k Hz
4586_AD C .at2c
2k
5k
10k
20k
40k
Figure 2-2. FFT (1kHz, -60dBFS input) FFT points=16384, Avg=8, Window=Equiripple
- 24 -
2005/7
ASAHI KASEI
[AKD4586]
(ADC, fs=96kHz)
A KM A K4586 ADC FFT (fs=96kHz; No signal input) FFT points=16384, Avg=8, W indow=Equirriple
+0 -10 -20 -30 -40 -50 -60 d B F S -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 40
50
100
200
500
1k Hz
4586_AD C .at2c
2k
5k
10k
20k
40k
Figure 2-3. FFT (Noise floor) FFT points=16384, Avg=8, Window=Equiripple
- 25 -
2005/7
ASAHI KASEI
[AKD4586]
(ADC, fs=96kHz)
A KM
-80 -82 -84 -86 -88 -90 -92 d B F S -94 -96 -98 -100 -102 -104 -106 -108 -110 -140
AK 4586 ADC THD+N vs Input Level (fs=96kHz; fin=1kHz)
-130
-120
-110
-100
-90
-80
-70 dB r
-60
-50
-40
-30
-20
-10
4586_AD C .at2c
Figure 2-4. THD+N vs Input Level (fin=1kHz)
A KM
-80 -82 -84 -86 -88 -90 -92 d B F S -94 -96 -98 -100 -102 -104 -106 -108 -110 40
A K4586 A DC THD+N vs fin (fs=96kHz; Input Level=-0.5dBFS )
50
100
200
500
1k Hz
4586_AD C .at2c
2k
5k
10k
20k
40k
Figure 2-5. THD+N vs fin (Single-ended input, Input Level=-0.5dBFS)
- 26 -
2005/7
ASAHI KASEI
[AKD4586]
(ADC, fs=96kHz)
A KM
+0 -10 -20 -30 -40 -50 -60 d B F S -70 -80 -90 -100 -110 -120 -130 -140 -140
A K4586 A DC Linearity (fs=96kHz; fin=1kHz)
-130
-120
-110
-100
-90
-80
-70 dB r
-60
-50
-40
-30
-20
-10
+0
4586_AD C .at2c
Figure 2-6. Linearity (fin=1kHz)
A KM
+0
A K4586 A DC Frequency R esponse (fs=96kHz; Input Level=-0.5dBFS)
-0.1
-0.2
-0.3
-0.4 d B F S
-0.5
-0.6
-0.7
-0.8
-0.9
-1 40
50
100
200
500
1k Hz
4586_AD C .at2c
2k
5k
10k
20k
40k
Figure 2-7. Frequency Response (Input Level=-0.5dBFS) (Including Internal RC filter: fc=424kHz)
- 27 -
2005/7
ASAHI KASEI
[AKD4586]
(ADC, fs=96kHz)
A KM AK 4586 A DC Crosstalk (fs=96kHz; Input Level=-0.5dBFS ) Upper@1kHz: Lch-->Rch; Lower@1kHz: Rch-->Lch
-100 -102.5 -105 -107.5 -110 -112.5 -115 -117.5 d B -120 -122.5 -125 -127.5 -130 -132.5 -135 -137.5 -140 40
50
100
200
500
1k Hz
4586_AD C .at2c
2k
5k
10k
20k
40k
Figure 2-8. Crosstalk (Input Level=-0.5dBFS)
- 28 -
2005/7
ASAHI KASEI
[AKD4586]
(2) DAC part [Measurement condition] * Measurement unit : Audio Precision, System two, Cascade * MCLK : 256fs * BICK : 64fs * fs : 48kHz, 96kHz * BW : 10Hz20kHz (fs=48kHz), 10Hz40kHz (fs=96kHz) * Bit : 24bit * Power Supply : AVDD=DVDD=TVDD=PVDD=5V * Interface : DIR * Temperature : Room
fs=48kHz Figure 3-1. FFT (1kHz, 0dBFS input) Figure 3-2. FFT (1kHz, -60dBFS input) Figure 3-3. FFT (Noise floor) Figure 3-4. FFT (Outband noise) Figure 3-5. THD+N vs Input Level (fin=1kHz) Figure 3-6. THD+N vs fin (Input Level=0dBFS) Figure 3-7. Linearity (fin=1kHz) Figure 3-8. Frequency Response (Input Level=0dBFS) Figure 3-9. Crosstalk (Input Level=0dBFS) fs=96kHz Figure 4-1. FFT (1kHz, 0dBFS input; Notch=OFF) Figure 4-2. FFT (1kHz, 0dBFS input; Notch=ON) Figure 4-3. FFT (1kHz, -60dBFS input) Figure 4-4. FFT (Noise floor) Figure 4-5. FFT (Outband noise) Figure 4-6. THD+N vs Input Level (fin=1kHz) Figure 4-7. THD+N vs fin (Input Level=0dBFS) Figure 4-8. Linearity (fin=1kHz) Figure 4-9. Frequency Response (Input Level=0dBFS) Figure 4-10. Crosstalk (Input Level=0dBFS)
- 29 -
2005/7
ASAHI KASEI
[AKD4586]
(DAC, fs=48kHz)
A KM AK 4586 DAC FFT (fs=48kHz; 1kHz, 0dBFS input) FFT points=16384, A vg=8, W indow=E quiripple
+0 -10 -20 -30 -40 -50 -60 d B r A -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 20
50
100
200
500 Hz
4586_D AC .at2c
1k
2k
5k
10k
20k
Figure 3-1. FFT (1kHz, 0dBFS input) FFT points=16384, Avg=8, Window=Equiripple
A KM AK 4586 DAC FFT (fs=48kHz; 1kHz, -60dBFS input) FFT points=16384, A vg=8, W indow=E quiripple
+0 -10 -20 -30 -40 -50 -60 d B r A -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 20
50
100
200
500 Hz
4586_D AC .at2c
1k
2k
5k
10k
20k
Figure 3-2. FFT (1kHz, -60dBFS input) FFT points=16384, Avg=8, Window=Equiripple
- 30 -
2005/7
ASAHI KASEI
[AKD4586]
(DAC, fs=48kHz)
A KM AK 4586 DA C FFT (fs=48kHz; "0" data input) FFT points=16384, A vg=8, W indow=E quiripple
+0 -10 -20 -30 -40 -50 -60 d B r A -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 20
50
100
200
500 Hz
4586_D AC .at2c
1k
2k
5k
10k
20k
Figure 3-3. FFT (Noise floor) FFT points=16384, Avg=8, Window=Equiripple
A KM AK 4586 DA C FFT (Outband Noise; fs=48kHz; "0" data input) FFT points=16384, A vg=8, W indow=E quiripple
+0 -10 -20 -30 -40 -50 -60 d B r A -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 100
200
500
1k
2k Hz
4586_D AC .at2c
5k
10k
20k
50k
100k
Figure 3-4. FFT (Outband noise) FFT points=16384, Avg=8, Window=Equiripple
- 31 -
2005/7
ASAHI KASEI
[AKD4586]
(DAC, fs=48kHz)
A KM
-90
AK 4586 DAC THD+N vs Input Level (fs=48kHz; fin=1kHz)
-92
-94
-96
-98 d B r A -102
-100
-104
-106
-108
-110 -140
-130
-120
-110
-100
-90
-80
-70 dB FS
-60
-50
-40
-30
-20
-10
+0
4586_D AC .at2c
Figure 3-5. THD+N vs Input Level (fin=1kHz)
A KM
-90
AK 4586 DAC THD+N vs fin (fs=48kHz; Input Level=0dBFS)
-92
-94
-96
-98 d B r A -102
-100
-104
-106
-108
-110 20
50
100
200
500 Hz
4586_D AC .at2c
1k
2k
5k
10k
20k
Figure 3-6. THD+N vs fin (Input Level=0dBFS)
- 32 -
2005/7
ASAHI KASEI
[AKD4586]
(DAC, fs=48kHz)
A KM
+0 -10 -20 -30 -40 -50 d B r A -60 -70 -80 -90 -100 -110 -120 -130 -140 -140
AK 4586 DAC THD+N vs Linearity (fs=48kHz; fin=1kHz)
-130
-120
-110
-100
-90
-80
-70 dB FS
-60
-50
-40
-30
-20
-10
+0
4586_D AC .at2c
Figure 3-7. Linearity (fin=1kHz)
A KM
+0.5
AK 4586 DA C THD+N vs Frequency Response (fs=48kHz; Input Level=0dBFS )
+0.4
+0.3
+0.2
+0.1 d B r A -0.1
+0
-0.2
-0.3
-0.4
-0.5 2k 4k 6k 8k 10k Hz
4586_D AC .at2c
12k
14k
16k
18k
20k
Figure 3-8. Frequency Response (Input Level=0dBFS)
- 33 -
2005/7
ASAHI KASEI
[AKD4586]
(DAC, fs=48kHz)
A KM AK 4586 DA C THD+N vs C rosstalk (fs=48kHz; Input Level=0dBFS ) Upper@1kHz: Rch-->Lch; Lower@1kHz: Lch-->Rch
-90 -92.5 -95 -97.5 -100 -102.5 -105 -107.5 d B -110 -112.5 -115 -117.5 -120 -122.5 -125 -127.5 -130 20
50
100
200
500 Hz
4586_D AC .at2c
1k
2k
5k
10k
20k
Figure 3-9. Crosstalk (Input Level=0dBFS)
- 34 -
2005/7
ASAHI KASEI
[AKD4586]
(DAC, fs=96kHz)
A KM
+0 -10 -20 -30 -40 -50 -60 d B r A -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 40
A K4586 DA C FFT (fs=96kHz; 1kHz, 0dB FS input; Notch=O FF)
50
100
200
500
1k Hz
4586_D AC .at2c
2k
5k
10k
20k
40k
Figure 4-1. FFT (1kHz, 0dBFS input; Notch=OFF) FFT points=16384, Avg=8, Window=Equiripple
A KM
+0 -10 -20 -30 -40 -50 -60 d B r A -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 40
AK 4586 DAC FFT (fs=96kHz; 1kHz, 0dBFS input; ADC 1kHz 0dB input)
50
100
200
500
1k Hz
4586_D AC .at2c
2k
5k
10k
20k
40k
Figure 4-2. FFT (1kHz, 0dBFS input; Notch=ON) FFT points=16384, Avg=8, Window=Equiripple
- 35 -
2005/7
ASAHI KASEI
[AKD4586]
(DAC, fs=96kHz)
A KM
+0 -10 -20 -30 -40 -50 -60 d B r A -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 40
AK 4586 DAC FFT (fs=96kHz; 1kHz, -60dBFS input)
50
100
200
500
1k Hz
4586_D AC .at2c
2k
5k
10k
20k
40k
Figure 4-3. FFT (1kHz, -60dBFS input) FFT points=16384, Avg=8, Window=Equiripple
A KM
+0 -10 -20 -30 -40 -50 -60 d B r A -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 40
AK 4586 DA C FFT (fs=96kHz; "0" data input)
50
100
200
500
1k Hz
4586_D AC .at2c
2k
5k
10k
20k
40k
Figure 4-4. FFT (Noise floor)
- 36 -
2005/7
ASAHI KASEI
[AKD4586]
(DAC, fs=96kHz)
A KM
+0 -10 -20 -30 -40 -50 -60 d B r A -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 100
AK 4586 DA C FFT (Outband Noise; fs=96kHz; "0" data input)
200
500
1k
2k Hz
4586_D AC .at2c
5k
10k
20k
50k
100k
Figure 4-5. FFT (Outband noise)
- 37 -
2005/7
ASAHI KASEI
[AKD4586]
(DAC, fs=96kHz)
A KM
-90
AK 4586 DAC THD+N vs Input Level (fs=96kHz; fin=1kHz)
-92
-94
-96
-98 d B r A -102
-100
-104
-106
-108
-110 -140
-130
-120
-110
-100
-90
-80
-70 dB FS
-60
-50
-40
-30
-20
-10
+0
4586_D AC .at2c
Figure 4-6. THD+N vs Input Level (fin=1kHz)
A KM
-80 -82 -84 -86 -88 -90 -92 d B r A -98 -100 -102 -104 -106 -108 -110 40 -94 -96
AK 4586 DAC THD+N vs fin (fs=96kHz; Input Level=0dBFS)
50
100
200
500
1k Hz
4586_D AC .at2c
2k
5k
10k
20k
40k
Figure 4-7. THD+N vs fin (Input Level=0dBFS) .
- 38 -
2005/7
ASAHI KASEI
[AKD4586]
(DAC, fs=96kHz)
A KM
+0 -10 -20 -30 -40 -50 d B r A -60 -70 -80 -90 -100 -110 -120 -130 -140 -140
A K4586 DA C Linearity (fs=96kHz; fin=1kHz)
-130
-120
-110
-100
-90
-80
-70 dB FS
-60
-50
-40
-30
-20
-10
+0
4586_D AC .at2c
Figure 4-8. Linearity (fin=1kHz)
A KM
+0.5
A K4586 DAC Frequency Response (fs=96kHz; Input Level=0dB FS)
+0.4
+0.3
+0.2
+0.1 d B r A -0.1
+0
-0.2
-0.3
-0.4
-0.5 2.5k 5k 7.5k 10k 12.5k 15k 17.5k 20k Hz
4586_D AC .at2c
22.5k
25k
27.5k
30k
32.5k
35k
37.5k
40k
Figure 4-9. Frequency Response (Input Level=0dBFS)
- 39 -
2005/7
ASAHI KASEI
[AKD4586]
(DAC, fs=96kHz)
A KM A K4586 D AC Crosstalk (fs=96kHz; Input Level=0dB FS) Upper@1kHz: Rch-->Lch; Lower@1kHz: Lch-->Rch
-90 -92.5 -95 -97.5 -100 -102.5 -105 -107.5 d B -110 -112.5 -115 -117.5 -120 -122.5 -125 -127.5 -130 40
50
100
200
500
1k Hz
4586_D AC .at2c
2k
5k
10k
20k
40k
Figure 4-10. Crosstalk (Input Level=0dBFS)
- 40 -
2005/7
ASAHI KASEI
[AKD4586]
IMPORTANT NOTICE * These products and their specifications are subject to change without notice. Before considering any use or application, consult the Asahi Kasei Microsystems Co., Ltd. (AKM) sales office or authorized distributor concerning their current status. * AKM assumes no liability for infringement of any patent, intellectual property, or other right in the application or use of any information contained herein. * Any export of these products, or devices or systems containing them, may require an export license or other official approval under the law and regulations of the country of export pertaining to customs and tariffs, currency exchange, or strategic materials. * AKM products are neither intended nor authorized for use as critical components in any safety, life support, or other hazard related device or system, and AKM assumes no responsibility relating to any such use, except with the express written consent of the Representative Director of AKM. As used here: (a) A hazard related device or system is one designed or intended for life support or maintenance of safety or for applications in medicine, aerospace, nuclear energy, or other fields, in which its failure to function or perform may reasonably be expected to result in loss of life or in significant injury or damage to person or property. (b) A critical component is one whose failure to function or perform may reasonably be expected to result, whether directly or indirectly, in the loss of the safety or effectiveness of the device or system containing it, and which must therefore meet very high standards of performance and reliability. * It is the responsibility of the buyer or distributor of an AKM product who distributes, disposes of, or otherwise places the product with a third party to notify that party in advance of the above content and conditions, and the buyer or distributor agrees to assume any and all responsibility and liability for and hold AKM harmless from any and all claims arising from the use of said product in the absence of such notification.
- 41 -
2005/7
5
4
3
2
1
U1 VD R1 R7 R11 PORT1 10 CSN 9 CCLK 8 CDTI 7 CDTO 6 uP-I/F 10k 10k 10k R5 R2 R8 470 470 470 2 3 4 5 6 7 8 9 1 19 R14 51 A1 A2 A3 A4 A5 A6 A7 A8 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 18 17 16 15 14 13 12 11 R3 R6 R9 100 100 100 CSN CCLK CDTI
JP1 GND Digital Ground Analog Ground
R4 AVDD 5.1 C1 10u + R12 330 R10 330
P12V 8
U2A NJM5532 +3 -2 4 R13 (open)
J1 RIN
1
D
1 2 3 4 5
G1 G2 74HCT541 RX1 44 43 42 41 40 39 38 37 36
C2 C3 R15
N12V P12V C4 10u + R16 330 8
D
18k
+ 10u 0.1u
U2B NJM5532 +5 -6 4 R17 (open)
J2 LIN
7
35
34
CDTO VD D1 1S1588 C5 X1 5p 12.288MHz C6 5p 2 C8 10u C10 10u + C9 0.1u C11 0.1u + 1 1 2 3 4 5 6 7 8 9 10 11 XTO
RX1
RX2
RX3
PDN
RX4
SLAVE
R19 10k 1 U4A 2 3 U4B 4
4103_RESETN R20 100 DVDD +3.3V TX MCKO
PDN
PVDD
PVSS
TST
I2C
R
R18 330 N12V RIN LIN 33 32 2 31 30 29 28 27 26 25 24 23 C12 0.1u + C13 2.2u INT0 3 1 ROUT1 LOUT1 ROUT2 LOUT2 ROUT3 2 LOUT3 DZF1 1 DZF2 3 DZF1 3 1
H
L
74HC14 C7 0.1u
74HC14
XTI/EXTCLK DVDD DVSS TVDD TX MCKO LRCK BICK CAD1/CDTO CAD0/CSN SDTO SDTI1 SDTI2 SDTI3 INT0 INT1 SCL/CCLK DZF2/OVF SDA/CDTI U3 AK4586
R21 1k TR1 RN1202 (10k,10k) R22 1k TR2 RN1202 (10k,10k) R25 1k 2 TR3 RN1202 (10k,10k) R26 1k INT1 3 1 2 TR4 RN1202 (10k,10k)
LE1 TR_5V DZF1
ROUT1 LOUT1 ROUT2 LOUT2 ROUT3 LOUT3 DZF1 VCOM VREFH AVDD AVSS
SW1 PDN
Normally H
LE2 TR_5V DZF2/OVF
C
C
J3 BNC(TX)
T1 DA-02F
R23 330 TX R24 100
LRCK BICK SDTO SDTI1
LE3 TR_5V INT0
12
13
14
15
16
17
18
19
20
21
22
RP1 1 2 3 4 5 6 7 8 9 47K 1 2 3 4 5 6 7 8
SW2
SDTI2 16 15 14 13 12 11 10 9 CDTO INT0 INT1 CDTI CCLK DZF2 SDTI3 CSN VD C14 0.1u + C15 10u
AVDD
LE4 TR_5V INT1
DIF2 DIF1 DIF0 CKS1 CKS0(ON=0)
4103 DIF2 DIF1 DIF0 CKS1 CKS0 ROUT1
P12V + + 3+ 24 ROUT1 3+ 24 + C16 22u R31 10k P12V U5A R27 NJM5532 220 1 8 8 U6A R28 NJM5532 220 1 J5 ROUT2 3+ 24 8 J4 ROUT2 R30 10k C17 22u C18 22u
P12V J6 U7A R29 NJM5532 220 ROUT3 1 L1 10u VD R33 5.1 DVDD L2 T2 NJM78M05FA 3 GND OUT IN 1 C24 0.1u 10u TR_5V +12V
ROUT3 R32 10k
AVDD
B
B
N12V 330p C19
N12V 330p C20
N12V 330p C21
R38 4.7K
R34 4.7k
R37 4.7K
R35 4.7k
R39 4.7K
R36 4.7k
+C22 47u
PORT2 6 6 GND VCC 5 5 GND OUT TORX176
C29 0.1u R46
C30 + 10u JP2 RX
TORX BNC
LOUT1 R44 10k
5+ 64
LOUT1
LOUT2 R43 10k
5+ 64
LOUT3 R45 10k
5+ 64
+3.3V
1 C31 47u + C32 0.1u
GND
4 3 2 1
VD L3 47u + + + C26 22u P12V U5B R40 NJM5532 220 7 N12V 8 8 8 J7 C27 22u P12V J8 U6B R41 NJM5532 220 LOUT2 7 C28 22u P12V J9 U7B R42 NJM5532 220 LOUT3 7 T3 LP2950A OUT IN 3 C33 0.1u DVDD C34 + 47u
A
J10 BNC(RX) R53 75
470 C38 0.1u
330p C35 RX1 R50 4.7K R47 4.7k R51 4.7K
N12V 330p C36
N12V 330p C37
2
2
C23 0.1u
A
R48 4.7k
R52 4.7K
R49 4.7k
Attention: P12V has +12V. N12V has -12V.
Title Size Document Number
AKD4586
AK4586
1
of
Rev
A3
Date:
5 4 3 2
B
2
Wednesday, March 14, 2001 Sheet
1
5
4
3
2
1
D
D
for 74HC14 ,74HCT541 VD C39 0.1u PORT3 5 IN 4 VCC 3 IF 2 6 6 GND 1 TOTX176(ADC) 5 C40 0.1u
R54 1k C41 0.1u
VD
for NJM5532 x4
C
U8 1 2 3 4 5 6 7 8 9 10 11 12 V1 U1 TRANS DIF2 RESETN DIF1 MCLK DIF0 SDTI TXP BICK TXN LRCK DVSS FS0/CSN DVDD FS1/CDTI CKS1 FS2/CCLK CKS0 FS3/CDTO BLS C1 ANS AK4103 24 23 22 21 20 19 18 17 16 15 14 13 DIF2 DIF1 DIF0 + C53 0.1u CKS1 CKS0 C54 10u VD
-12V L4 N12V + + + + + C42 47u (short)
C
4103_RESETN
C43 0.1u
C44 10u
C45 0.1u
C46 10u
C47 0.1u
C48 10u
C49 0.1u
C50 10u
+12V
for NJM5532 x4 L5 P12V
MCKO BICK LRCK
R55 R56 R57
100 100 100
R59 R60 R61 R63
100 100 100 100
MCLK BICK LRCK SDTO NC
1 2 3 4 5
PORT4 10 GND 9 GND 8 SDTI1 7 SDTI2 6 SDTI3 AC3
R62 R64 R65
100 100 100
C55 47u SDTI1 SDTI2 SDTI3
+
(short)
+
+
+
+
C57 0.1u
C58 10u
C59 0.1u
C60 10u
C61 0.1u
C62 10u
C63 0.1u
C56 10u
B
B
R58
100
SDTO
SDTI1 JP26 SDTI2 JP27 SDTI3 JP28
A
A
Title Size Document Number
AKD4586
Interface
Sheet
1
Rev
A3
Date:
5 4 3 2
B
2
of
Wednesday, March 14, 2001
2


▲Up To Search▲   

 
Price & Availability of AKD4586

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X